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Evolution of a vortex in a rotating
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In this paper we examine the evolution of an isolated vortex in a rotating conducting
fluid which is threaded by a uniform magnetic field. Magnetic and rotation forces
dominate over nonlinear and viscous effects and the flow is incompressible. The study
is formulated in terms of an unbounded initial value problem with emphasis on
the asymptotic solutions at large time. When the homogeneous imposed magnetic
field is normal to the rotation axis it is observed that inertial waves, induced by the
prescribed initial condition, transport energy on planes perpendicular to the magnetic
field to form a series of counter-rotating travelling eddies. Transport along magnetic
field lines occurs by pseudo-diffusion, common at low magnetic Reynolds numbers,
and by wave propagation from those inertial waves that survive the strong magnetic
damping.

1. Introduction
Vortices in magnetostrophic balance tend to evolve into complex structures, since

both the Coriolis and Lorentz forces are anisotropic. In this article we study the
mechanisms which underlie this complex evolution, and draw conclusions about the
general shapes adopted by eddies at large time.

There are many naturally occurring flows which involve rotating conducting fluids,
the flow within the core of the Earth being one example. The present work is motivated
by the study of motion in the core whose scale (∼ 1–10 km) is much smaller than the
characteristic dimension of the terrestrial outer core (∼ 2000 km). Small-scale motion
in the core is important for several reasons. For example, it enhances the diffusion of
heat and chemical species and plays a key role in classical theories of the geodynamo
(i.e. the α-effect). However, numerical simulations of the core cannot resolve these
scales and so there is a need to understand better the behaviour of the small scales as
a first step towards parameterizing their effect (see Braginsky & Roberts 1995). Near
the solid inner core, which is the most likely source of small-scale motion, there is
thought to be an intense east–west magnetic field, and so the dominant forces acting
on an eddy are the Lorentz and Coriolis forces. Our aim is to clarify the way in which
these forces shape and dissipate small-scale motion.

From the numerical values of the parameters relevant to the study of small-scale
motion in, for example, Moffatt & Loper (1994), it is assumed here that the Rossby
number Ro and the magnetic Reynolds number Rm are small. These regimes, taken
separately, have been extensively documented in the literature. Consider first the case
where an eddy evolves in a uniform magnetic field B0. The key dimensionless group
is Rm = ul/η, a Reynolds number based on the magnetic diffusivity η and the relevant
velocity and length scales u, l. At low Rm, the Lorentz force causes momentum to
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Figure 1. (a) Vortex threaded by a uniform magnetic field in a rotating fluid.
(b) Coordinate system defining the wavevector.

diffuse along field lines. Studies by, for instance, Moffatt (1967) and Davidson (1997)
have suggested that the characteristic length scale parallel to the magnetic field lB
grows at a rate

lB ∼ l⊥(t/τ )1/2, (1.1)

where l⊥ denotes the perpendicular length scale and

τ = ρ
/(

σB2
0

)
(1.2)

is the Joule damping time. Here ρ and σ are the density and the electrical conductivity
of the fluid. This diffusion-like mechanism will be here referred to as pseudo-diffusion.
The Joule damping time τ plays a second important role at low Rm: it is the charac-
teristic time scale on which a static magnetic field B0 damps out motion (see Shercliff
1965).

The Rossby number is Ro = u/2Ωl for a background rotational rate Ω . Low Ro
characterizes a regime where the nonlinear inertial forces are negligible (cf. Greenspan
1968). In addition, it suggests that the characteristic group velocity of inertial waves,
2Ωl, is greater than the characteristic flow velocity, and one expects energy and
momentum to be transported primarily by inertial oscillations. Several features of
inertial waves have been touched upon by, for example, Bretherton (1967) in the
context of the disturbances generated by rigid bodies moving through a rotating fluid.
A common feature is the appearance of Taylor columns in which the fluid moves
with the body, a feature attributed to the propagation of inertial waves. However,
studies of the effects of rotation on deformable bodies for which the velocity is not
constantly prescribed, are rare (see Loper 2001) and the aim of the present work is to
investigate the combined effects of rotation and a uniform imposed magnetic field on
a freely evolving vortex, cf. figure 1(a). Of particular importance is that the growth
of the vortex along the rotation axis, based on wave propagation, and along the field
lines, based on (1.1), is expected to be controlled by different time scales, as discussed
previously by Davidson & Siso-Nadal (2002).

2. Formulation
2.1. The governing equations

Consider an unbounded rapidly rotating fluid which is threaded by a uniform imposed
magnetic field B0. The evolution of the velocity field u is governed by

∂t u + 2Ω × u = −∇p + (µ0ρ)−1(B0 · ∇)b; (2.1)
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the last term on the right-hand side is the rotational part of the Lorentz force, b
the induced magnetic field and µ0 the magnetic permeability (cf. Shercliff 1965). The
fluid pressure has been augmented by the irrotational part of the Lorentz force and
by the centripetal force and both u and b are solenoidal. If Rm is small then Ohm’s
law reduces to

j = σ (−∇φe + u × B0), (2.2)

where j is the current density and φe the electric potential. When combined with
Ampère’s law, ∇ × b =µ0 j , this yields a simplified form of the induction equation,

η∇2b = −B0 · ∇u, (2.3)

where η =(µ0σ )−1. Substituting (2.3) into the linearized momentum equation (2.1)
gives

∂t u + 2Ω(êΩ × u) = −∇p − τ−1∇−2(êB · ∇)2u, (2.4)

where êΩ and êB are unit vectors in the directions indicated by their subscripts and
∇−2 is the inverse of the Laplacian defined via the Biot-Savart law.

An evolution equation for the vorticity, ω = ∇ × u, is readily found from the
momentum equation. It is (Davidson & Siso-Nadal 2002)

[∂t + τ−1∇−2(êB · ∇)2]2∇2ω = −(2Ω)2(êΩ · ∇)2ω, (2.5)

an equation which is also obeyed by the velocity field u.

2.2. Inertial waves at low Rm

Introduce the Fourier transform pair

ω̂ =
1

(2π)3

∫
ω exp(−iκ · x) d3x, ω =

∫
ω̂ exp(iκ · x) d3κ,

and transform (2.5) to yield

[d/dt + τ−1(êB · êκ )
2]2 ω̂ = −(2Ω)2(êΩ · êκ )

2ω̂, (2.6)

the general solution of which is

ω̂ = exp[−(êB · êκ )
2t/τ ]{A exp[−i2Ω(êΩ · êκ )t] + B exp[i2Ω(êΩ · êκ )t]}. (2.7)

Here A and B depend on the initial conditions and êκ is a unit vector in the direction
of the wavevector κ . The inversion of (2.7) yields the vorticity as a superposition of
plane waves,

ω =

∫
A exp[i(κ · x − λt)] d3κ +

∫
B exp[i(κ · x + λ
t)] d3κ, (2.8)

where

λ = 2Ω(êΩ · êκ ) − iτ−1(êB · êκ )
2 (2.9)

is the complex frequency and the star denotes a complex conjugate. In the dispersion
relation (2.9) the real term represents the frequency of inertial waves and the imaginary
part indicates that motion is damped by Joule dissipation. The characteristics of these
waves can perhaps be seen clearly by examination of the velocity field due to a single
Fourier component. The velocity of the modified waves is found explicitly from the
curl of the momentum equation (2.4), and one finds that

u = U [êζ cos � ± (êκ × êζ ) sin � ] exp[−(êB · êκ )
2t/τ ]. (2.10)
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Here êζ is a vector perpendicular to the direction of wave propagation êκ , U is a
constant and � = κ · x − Re(λ)t . Note that, as for any incompressible flow, u is normal
to êκ . Furthermore, the trajectories are circular. This expression is the same as the
trajectory equation for inertial waves in a non-conducting fluid given by Phillips
(1977), except for the appearance of the damping term.

The current and electric potential associated with the oscillations can be found from
the curl and divergence (respectively) of Ohm’s law (2.2). We note that, when κ is
parallel to B0, the potential is zero and the Lorentz force is antiparallel to u, resulting
in magnetic damping. However, when κ is perpendicular to the field, the electrical
potential balances the term u × B0, the Lorentz force is zero and the wave is devoid
of damping (see also Moffatt 1970). The same conclusions concerning dissipation can
be reached by examining the exponential in (2.10), from which one finds the following
dissipation condition:

êB · êκ ∼ (t/τ )−1/2. (2.11)

Wave motion associated with a particular wave component κ decays on a time scale

t/τ ∼ (êB · êκ )
−2. (2.12)

The magnetic field continuously dissipates waves, starting with those with wavevector
κ parallel to B0 and proceeding to those which are nearly aligned to the field.
Clearly, the longest surviving waves propagate at right angles to the magnetic field,
i.e. êκ · êB ∼ 0.

The transport of energy by inertial waves is characterized by the group velocity

Cg = 2Ω |κ |−1 [êΩ − êκ (êΩ · êκ )], (2.13)

and it follows that

(êκ × êΩ ) · Cg = 0. (2.14)

This equation states that the energy associated with a wavevector êκ is always confined
to planes spanned by êκ and the axis of rotation, which is relevant to the analysis in
the next section.

3. Asymptotic solutions
A more tractable form for ω, valid for large time, is now derived. Let the orientation

of the imposed vectors be such that B0 = 〈0, B0, 0〉 and Ω = 〈0, 0, Ω〉 in a Cartesian
frame (x, y, z). The relative importance of magnetic to Coriolis forces is measured by
the Elsasser number which, in terms of the relevant time scales, is

Λ = (2Ωτ )−1. (3.1)

Of particular importance for the study of the dynamics of the Earth’s core is the case
for which Λ = O(1). Time could be scaled by either Ω−1 or τ and the scaling

t = 2Ωt (3.2)

is introduced.
Attention is restricted to waves with phase speed components in the positive z-

direction, i.e. to the first integral in (2.8). The ith component of this integral, say ω+
i ,

is now analysed in detail. It is convenient to transform the wavevector κ to spherical
polar coordinates (κ, θ, φ) as shown in figure 1(b) with φ being the azimuthal angle
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measured from the z-axis about the y-axis, θ being the co-latitude and κ = |κ |. Then

ω+
i =

∫
dθ exp(−tΛ cos2 θ) sin θ

∫
Aiκ

2 exp(ith) dφ dκ, (3.3)

where

h = [κX sin φ + (κZ − 1) cos φ] sin θ + κY cos θ. (3.4)

The coordinates (X, Y, Z) appearing in this phase function are scaled forms of the
original variables (x, y, z), i.e.

{X, Y, Z} = {x/2Ωt, y/2Ωt, z/2Ωt}. (3.5)

This scaling allows the coordinate system to ‘follow’ the propagation of the inertial
waves expected in this problem.

The behaviour of (3.3) at large times is now examined. It is assumed that t � 1
while Λ = O(1) so that time is larger than both the rotation period and the
magnetic damping time, i.e. 2Ωt � 1 and t/τ � 1. The asymptotic estimation of
such integrals is well documented; see, for instance, Bleistein & Handelsman (1986)
or Wong (1989). The resulting asymptotic series depends on the local behaviour of
the integrand at a critical point, which represents a dominant wavevector κc. In
(3.3), the argument of the exponential in the inner integral is purely imaginary, and
a multidimensional stationary phase method is called for. The critical points are
identified from ∂κh = ∂φh = 0. These equations do not admit an explicit solution for
all Y, but for Y � Z, X one finds

κc =
Z

r2
∓

(X

r
cot θ

) Y

r
+ O

(
Y2

r2

)
, (3.6a)

cos φc = ∓X

r
−

(Z

r
cot θ

) Y

r
+ O

(
Y2

r2

)
, (3.6b)

where r2 = X2 + Z2. Our interest in regions for which Y � r is motivated from the
following. The anisotropic damping specified by (2.11) results in a confinement of
wavevectors to planes perpendicular to B0. In the present configuration, these
perpendicular planes are parallel to êΩ and it follows from (2.14) that the group
velocity, quickly transporting energy at a rate Ω , is predominantly coplanar to these
perpendicular (X, Z)-planes.

The details of the application of the stationary phase method to the inner integral
in (3.3) are shown in the Appendix and the resultant expression renders ω+

i into

ω+
i =

2π

t

∫
Ai(φc, κc, θ)κ2

c

|X cos φc − Z sin φc|
exp(tf ) dθ, (3.7)

where

f = −Λ cos2 θ − i cos φc sin θ. (3.8)

This integral can be estimated via the method of steepest descents. The critical value
of θ is found from ∂θf =0, and it is

θc =
π

2
− Z

r

(
±X/r + i2Λ

X2/r2 + 4Λ2

)
Y

r
+ O

(
Y3

r3

)
, (3.9)
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Figure 2. Interpretation of the dominant wavevector. (a) The magnitude of the dominant
wavevector is such that energy is found at the point of interest. (b) Dominant waves propagate
at right angles to the vector 〈X ,Z〉.

The integral in (3.7) is now evaluated about this critical point. The details are
shown in the Appendix and the resulting expression is

ω+
i ∼ Ac

i Z
2

t(Λt)1/2

(
π3

a

)1/2
2

r5
exp (tfc) exp

[
i
1

2
tan−1

(
λΩ

2Λ

)]
. (3.10)

Here

fc ∼ − 1

Λ

( Z

2ar

)2 (Y

r

)2

− iλΩ

[
1 +

1

2

( Z

2ar

)2 (Y

r

)2
]

(3.11)

and

a2 =

(
λΩ

2Λ

)2

+ 1, λΩ = ∓X

r
. (3.12)

The term λΩ is the first term in expansion (3.6b) and thus 2ΩλΩ represents the
frequency of the critical waves. Also Ac

i =Ai(κc). To obtain (3.10), terms up to order
(Y/r)2 have been retained.

The critical value of the wavevector κc = 〈κc, φc, θc〉, as specified by (3.6) and (3.9)
is interpreted in what follows. First, the critical angle θc between the wavevector and
B0 is analysed. The values of Y corresponding to significant motions follow from the
real part of the exponential in (3.10): Y/r ∼ (2ar/Z)(Λ/t)1/2. Thus (3.9) suggests that,
as time advances, the dominant wavevectors approach perpendicularity to the field
lines at a rate of O[(t/τ )−1/2]. This is in accordance with (2.11) and implies that, for
sufficiently large times, energy is confined predominantly to planes perpendicular to
the field lines.

The magnitude of the critical wavevector, as given in (3.6a), indicates that the
distance travelled by the associated energy along (X, Z)-planes (perpendicular to B0)
is approximately equal to the distance from the origin to the point of interest (X, Z).
For, the distance travelled by the energy, |Cg|t , can be written as

|Cg|t ∼ 2Ωt | sin φc|/κc ∼ 2ΩtZ/κcr, (3.13)

so that the substitution of κc into the previous expression gives

|Cg|t ∼ (x2 + z2)1/2. (3.14)

This idea is depicted in figure 2(a).
The direction of propagation of the dominant wavevector is inferred from φc, as

given in (3.6b). It indicates that the critical wavevector advances preferentially at
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Ω
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Figure 3. Lines of constant phase.

right angles to the position vector 〈X, Z〉; cf. figure 2(b). This suggests that the critical
waves radiate like pure inertial waves, at right angles to κ .

There is one more piece of information one can obtain from the critical point. It
follows from (3.6a) that only positive Z values contribute to ω+

i . Since this integral
represents waves with phase speed components in the positive Z-direction, the êΩ

component of both the phase velocity and the velocity at which energy propagates
have the same sign. This is consistent with the behaviour of inertial waves (see
Lighthill 1978, Epilogue).

The exponential term in (3.10) possesses some interesting features which will be
now discussed. Consider first the leading imaginary argument,

exp(−itλΩ ) = exp[±itX(X2 + Z2)−1/2], (3.15)

which is independent of y. For a given time, lines of constant phase are lines for which
Z/X = constant. As time advances, the lines of constant phase rotate towards being
aligned with the axis of rotation, giving rise to new peaks or troughs which appear
at lateral planes as shown in the sketch of figure 3. This behaviour is a common
propagation of inertial waves and was discussed by Bretherton (1967, figure 4) in
the context of two-dimensional motion. Thus the oscillatory patterns resemble two-
dimensional inertial wave propagation in non-conducting fluids.

Now, with reference to the flow evolution along field lines, consider the real
exponential argument in (3.10) which represents a decay of motion along field lines.
The characteristic length scale along this direction is

y ∼ 2ar2

Z

( t

τ

)1/2

∼ 2a

κc

( t

τ

)1/2

, (3.16)

a scaling valid for regions around the wave front r/ l =O(1). As we shall see, there
are two mechanisms whereby energy is transported along field lines: pseudo-diffusion
and propagation by waves whose wavevectors have non-zero components in the B0-
direction. In the one hand, when magnetic effects dominate (large Λ), the dissipation
of waves is strong and the only surviving wavevectors are those that propagate at right
angles to B0. These waves redistribute energy on the perpendicular planes exclusively
and this energy is instantaneously channelled along B0 by pseudo-diffusion. By
instantaneous we mean that the characteristic magnetic time τ is smaller than the
period of the oscillations. It follows from (3.16) that when Λ is large and |λΩ |/Λ � 1,
that is when a ∼ 1,

y ∼ 2

κc

( t

τ

)1/2

. (3.17)
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This scaling characterizes pseudo-diffusion as written in (1.1). Note that κ−1
c represents

the characteristic length scale on the perpendicular plane and so it plays the same
role as l⊥ in (1.1).

On the other hand, when magnetic effects are weak, another means of transport
along field lines prevails: wave propagation. When the field strength is weak,
dissipation of waves occurs slowly in the sense that the magnetic damping time
τ is larger than the period of oscillation. Under these circumstances, it is possible to
find waves whose wavevectors κ are not perpendicular to the field lines, although as
time advances, those wavevectors with largest êB components are lost at a rate given
by (2.12). The group velocity of the non-perpendicular waves is such that energy is
transported along the magnetic axis. In this weak field scenario, the characteristic
length scale along the field lines is found by taking |λΩ |/Λ � 1 in (3.16) giving

y ∼ |λΩ |
Λκc

( t

τ

)1/2

. (3.18)

That expression (3.18) is associated with wave transport can be seen as follows. The
distance travelled by the energy along the B0-axis is

(Cg · êB)t = −2Ωt |κ |−1(êκ · êΩ )(êκ · êB). (3.19)

The inner product êκ · êΩ = cosφ sin θ and can, for large time, be approximated as
|λΩ |, cf. (3.6b), (3.9) and (3.12). Also (êκ · êB) ∼ ±(t/τ )−1/2 from (2.11). The substitution
of these expressions into (3.19) results, in accordance with (3.18), in

(Cg · êB)t ∼ ± |λΩ |
Λ|κ |

( t

τ

)1/2

. (3.20)

Any oscillations along the y-axis come from the third term in (3.11), which displays
a stationary point at y = 0. The width of this stationary phase point is of the same
order as the characteristic length scale along the magnetic field lines, suggesting that
there are no oscillations of practical importance in this direction.

Finally, from the two contributions of (3.10), one finds that (cf. the Appendix)

ω+
i ∼ |Ai |cZ2

t(Λt)1/2

(
π3

a

)1/2
4

r5
exp

[
−

( Z

2ar

)2
(

t

Λ

Y2

r2

)]
cos(−t|λΩ | + β + αi), (3.21)

where |Ai |c and αi are the modulus and phase of Ac
i and

β =
1

2
tan−1

(
|λΩ |
2Λ

)
− |λΩ |

( Z

2ar

)2
(

t

2

Y2

r2

)
. (3.22)

The algebraic time decay shown in (3.21) is representative. Decays of order t−3/2

are common in energy-preserving three-dimensional wave propagation, where waves
propagate along each axis at a rate Ω . On the other hand, the present problem is
quite different: growth along B0 happens at a slower rate, which implies that energy
is not conserved.

4. Example and discussion
The asymptotic expressions presented in the previous section are generic, in the

sense that they are not specific to a particular initial condition. Nevertheless, it is
useful to prescribe an initial flow and follow its development.
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Figure 4. Contours of vorticity ωz when t = 5π for a vortex initially aligned with Ω .
(a)y/l = 1.5; (b)z/l = 6. Dashed contours represent negative vorticity and Λ = 1.

The constants of integration in (2.8) are found by specifying an initial vorticity field,
say ω0. The initial rate of change of ω0 is set by the curl of (2.4), whose transform is

∂t ω̂0 = −τ−1(êB · êκ )
2ω̂0 − i2Ω |κ |(êΩ · êκ )û0, (4.1)

so that the ith component of A becomes

Ai = 1
2
(ω̂0 + |κ |û0)i. (4.2)

Consider an axisymmetric spherical Gaussian vortex aligned with the rotation axis
(z-direction). The initial velocity is

u0 = γ (êz × x) exp(−|x|2/l2), (4.3)

where γ is a measure of the angular velocity of the vortex and l is the characteristic
size of the initial disturbance. The transformed velocity and vorticity are

û0 = −iD(êz × êκ ), (ω̂0)i = D(δ3i − κ3κi |κ |−2), (4.4)

where D = (16π3/2)−1γ l5|κ | exp(−|κ |2l2/4) and D = (16π3/2)−1γ l5|κ |2 exp(−|κ |2l2/4).
In (4.4), δji is the Kronecker delta and the index 3 represents the z-direction.

We can now study the evolution of a vortex as written in (4.3). Considering the
z-component of (3.21), the modulus and phase of Az are, from (4.2), (4.4) and (3.9)

|Az|c ∼ 1
2
D(κc) sin2 φc, αz = 0. (4.5)

The substitution of Az and αz into (3.21) gives the contours of ωz shown in figure 4.
Figure 4(a) shows the vorticity on a plane perpendicular to the magnetic field. It is
seen that the vortex, which is originally situated at the origin, evolves into a series of
counter-rotating eddies. Each of these vortical structures follows the behaviour of the
lines of constant phase as depicted in figure 3 and, as waves propagate, a substantial
amount of energy leaks away from the axis of rotation. The vorticity is concentrated
in packets which detach themselves from the origin and travel away from it. Both the
speed at which the packets travel and their rate of stretch scale with 2Ωt .

Figure 4(b) shows ωz on a plane parallel to the magnetic field, and reiterates the fact
that the flow along field lines is devoid of oscillations. The vortical patterns in planes
perpendicular to the field lines (where waves are free to propagate) are extruded in
the direction of the applied magnetic field by a combination of the two transport
mechanisms mentioned in § 3.

The authors would like to thank John Lister and Nigel Peake for fruitful discussions.
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Appendix. Mathematical details
The inner integral in (3.3) was approximated using a multidimensional stationary

phase method as documented by Bleistein & Handelsman (1986, § 8.4), giving∫
g(x) exp[ith(x)] d2x ∼

(
2π

t

)
g(xc)

∣∣ det
(
Hc

ij

)∣∣−1/2
exp

[
ith(xc) +

iπsig
(
Hc

ij

)
4

]
, (A 1)

where Hc
ij is the Hessian matrix evaluated at the critical point (3.6) and sig(·) is

its signature (the number of positive eigenvalues minus the number of negative
eigenvalues). For the present problem, det(Hc

ij ) = −(X cos φc − Z sin φc)
2 sin2 θ and

sig(Hc
ij ) = 0. The inner integral in (3.3) becomes∫

Aiκ
2 exp(ith) dφ dκ ∼ 2πAi(κc, φc, θ)κ2

c

t|(X cos φc − Z sin φc) sin θ | exp[ith(κc, φc, θ)]. (A 2)

This leads to (3.7), where the exponential has a complex argument. A steepest descents
method is called for, the relevant formula being (Bleistein & Handelsman 1986, § 7.2)∫

g(θ) exp[tf (θ)] dθ ∼

√
2π

t|f ′′(θc)|
g(θc) exp[tf (θc)] exp

{
i

[
π

2
− arg[f ′′(θc)]

2

]}
.

(A 3)

The relevant components at the critical point are

|f ′′(θc)| ∼
(
λ2

Ω + 4Λ2
)1/2

, (A 4)

arg {f ′′(θc)} ∼ − tan−1 (λΩ/2Λ) + π. (A 5)

Substitution of these expressions into (A 3) leads to (3.10), which represents two
contributions to ω+

i . Adding the two contributions leads to (3.21).
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